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A new Chebyshev pseudo-spectral algorithm with finite difference
precanditioning is proposed for the solution of advection—diffusion
equations. A mapping technique is introduced which allows good
convergence for any Peclet number both for one-dimensional and
two-dimensional problems. Numerical results show that first-order
Lagrange polynomials are the optimal mapping procedure for the
one-dimensional problem and second-order Lagrange polynomials, for
the two-dimensional one.  © 1994 Academic Press, Inc.

1. INTRODUCTION

The need to solve implicit equations is a basic require-
ment for spectral algorithms. For both steady problems,
whose solution is sought through a time marching com-
putation, and for unsteady calculations, the use of spectral
methods may often be feasible only if an implicit or a
semi-implicit procedure is introduced. A typical case is the
solution of the unsteady Navier-Stokes equations, where
an implicit treatment of the diffusive and of some of the
advective terms may be required to increase the maximum
permissible time step. The present study is confined to
linear systems, and we assume that nonlinear ones can be
treated by standard linearization techniques. We consider
two model equations:

in one-dimension,

du d’u
E—Eﬁ—ﬂx),

(1

flx)=n?sin{nx) + 7 cos(mx);

in two dimensions,

ou ou
plx, y) F g(x, y) Fe e du+r(x, y)u=f(x, y),
plx,y)=3x—-y—1,
Q(Xs }’) = 1:
) (2)
Hx, y) =1,

Fflx, y)=(er?+ r(x, y)) sin(zx) sin(ny) + p(x, y) cos(nx)

x sin{ny)n + g{x, y)x sin(nx) cos(ny),

to be solved within the usual Chebyshev domain with
homogeneous Dirichlet boundary conditions. Pseudo-
spectral techniques for the discretization of (1) or {2} lead to
the linear system of equations,

LU=F, (3)

which must be inverted with the minimum computational
effort. To grasp the difficulties underlying the solution
of system (3) we begin from the one-dimensional case.
If Eq.{I) is discretized with a Chebyshev collocation
method the (n — 1) x (m — 1) matrix L represents the pseudo-
spectral approximation to the advective—diffuxive operator,
obtained by collocation at the points (x;=cos{ja/n),
¥j=1, .., n— 1) which are the extrema of the nth degree
Chebyshev polynomial in ]—1; I[. Matrix L is nonsym-
metric, full, which rules out direct inversion for large values
of n, and, moreover, its condition number increases at least
like nx#n if £ 5 0[1]. The rapid increase of the condition
number with # is the primary cause of the inefficiency of any
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standard iterative method. To alleviate the problem a
preconditioning matrix H is introduced and system (3)
rewritten as

H 'LU=H"'F, (4)
where H must satisfy some basic properties for the pre-
conditioning to be effective. A first obvious requirement is
that it must be possible to invert H in an inexpensive way.
A second requirement is that H~! must be a good
approximation of L~ . If this last requirement is satisfied we
can expect the eigenvalues of H 'L to be well clustered, i.e.,
the spectral condition number of H™'L to be small and
positive definite. When these requirements are satisfied,
even a simple iterative method can be expected to perform
well. An iterative method widely used in this context [1] is
Richardson’s, where the solution U of a linear system of
equations LU = F is sought through a series of successive
approximations V" obtained as

Vot = L w(F—LV"), (5)
where o 15 a relaxation parameter that has to be chosen
to minimize the spectral radius of the iteration matrix
(- wL). A preconditioned version of the same method is

V"+12V’r+wH71(F—LV"), (6)
where matrix H does not have to be inverted since Eg. (6)
can be rewritten as

H(F"t' — V") =w(F-LV"). (7
Equation (7) shows the need for the first of the above dis-
cussed requirement, for matrix H: the inversion of H must
be cheap enough to make the solution of system (7) less
expensive than the computation of LV (usually performed
via a fast Chebyshev transform). Preconditioning techni-
ques have been investigated extensively, using both finite
difference and finite elements methods to discretize the
left-hand side of (7}, but most of the existing applications
are concerned with spectral solutions of first order or of
Helmholtz type partiai differential equations (pde) [241.
The present authors found a lack of preconditioning techni-
ques suitable for advection—diffusion equations. The aim of
this paper is to propose a new type of preconditioning,
based on upwind finite difference and on a mapping
operator, suited for matrix L, representative of a pseudo-
spectral approximation to advective-diffusive operators.
The limiting behaviour of standard finite difference pre-
conditioners is reviewed and the modified algorithm for the
one-dimensional problem introduced in Section 2, while in
Section 3 the two-dimensional problem (Eq.(2)) is dis-
cussed. In Section 2 and in Section 3 an exhaustive number
of numerical results are presented to validate the algorithm.

2. BASIC ALGORITHM

This section is devoted to the description of the general
formulation. The basic idea rests upon an iterative process,
where at each step a finite difference problem has to be
solved, whose right-hand side is given by a residual
evaluated through a Chebyshev pseudo-spectral calcula-
tion. The global procedure can be thought of either as a
preconditioning, by finite difference corrections, within a
pseudo-spectral computation, or as a finite difference proce-
dure with a deferred correction given by the spectral
residuals [2]. We begin our analysis by considering Eq. (1).
A preconditioner based on second-order central finite

differences for the advective operator, é.., and for the
diffusive term, 6.,

S ti;— 80, U =f, (8)
leads to the preconditioned system:

D 'LU=D]'F. (9)

The ecigenvalues of the preconditioned matrix D 'L for
&= 1and for e =0.1 for a 21- and a 41-node Chebyshev grid
are shown in Figs. 1,2, 3, 4 and in Table L

The preconditioned eigenvalues are essentially real with
very small imaginary parts, well clustered, and their spread
is independent from the number of nodes. Although the cen-
tral difference discretization of the advection term shows
very good performances as a preconditioner it also presents
the major drawback of losing its own diagonal dominance
for low & values and, more specifically, when the cell Peclet
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FIG. 1. Eigenvalues distribution of the preconditioned matrix D 'L
at = 1.0 for a 21-node collocation.
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FIG. 2. FEigenvalues distribution of the preconditioned matrix D 'L
at & = 1.0 for a 41-node collocation.

number (Pe =1 x Ax/e, where Ax ~ 1 /n), becomes close to
2 [7]. On the mesh used for the above example it becomes
very expensive, if not impossible, to invert the finite dif-
ference matrix for value of ¢ lower than 0.03 since the finite
difference matrix itself becomes very ill conditioned. One of
the most popular ways to overcome this problem is the
introducton of an upwind discretization of the advection
term which restores the diagonal dominance of the finite
difference matrix. When upwind is intreduced in the finite
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FIG. 3. Eigenvalues distribution of the preconditioned matrix D 'L
at €= 0.1 for a 21-node collocation.
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FIG, 4. FEigenvalues distribution of the preconditioned matrix D 'L
at e=0.1 for a 41-node collocation.

difference preconditioner we obtain the preconditioned

linear system of equations
D_'LU=D_'F, (10)

where D! is the inverse of the matrix D, built through a

second-order upwind discretization of the advective term

(d 7) leading to

d_u,—ed u= 1,

. (11)
A numerical analysis of the eigenvalues of the precondi-
tioned matrix Du‘P‘L is shown in Figs. 5,6,7,8 and in
Table I in which, the first column refers to the precondi-
tioned operator and to the ¢ value, the second column (the
third) is the maximum (minimum} real part of the eigen-
values spectrum, the fourth column contains the maximum
imaginary part and the last column yield the spectral
condition number (A,../%4min)- All the values refer to a
21-point pseudo-spectral Chebyshev approximation.

TABLEI
Testcase Max R(2) Min (1) Max 3{4) K
D L, e=1 23313 1.0000 0.0000 23373
DL e=10"" 2.1021 1.0000 0.1957 21021
D 'Le=10"" 1.2877 0.8809 0.0533 1.4484
Du’pI L,e=10"" 0.9966 0.4102 0.5115 2.4295
DL, e= 10-2 0.9974 0.1671 0.7300 5.9688
DI_‘_Dl Le=10"* 0.9017 —0.0300 0.8222 30.056




4 PINELLI, BENOCCI, AND DEVILLE

1T TrrrvrrrrrrY T T T T T T L T T T T T T T
L J
s E
o -
A _
2 .
" N ]
H . o
“ 2 ol 6 0 @ -
a0 =}
€ L J
_2k —
-4k .
-6 4
-8 f i
~1.8 PR S WY R T NN SO WY TN T NN AN NN (NN T AT SR Y VU W TN NN WO SN P N U N N N 1

] L2 .4 b .8 1P 1.21.4 1.6 1B 2.¢ 2.2 2.4 2.6 2830272

raal axis

FIG. 5. Eigenvalues distribution of the preconditioned matrix D 'L
at ¢ = 0.1 for a 21-node collocation.

The preconditioned ecigenvalues are always complex and
show a sharp trend to move toward the negative part of
the real axis as & decreases. It follows that the whole
preconditioned matrix D _ 'L becomes no longer positive
definite for low ¢ values.

We face a situation in which, for low &, a finite difference
central discretization of the advective terms cannot be used
to avoid the corruption of the diagonal dominance of the
finite difference preconditioner itself, while an upwind dis-
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FIG. 6. Eigenvalues distribution of the preconditioned matrix D;P' L
at =001 for a 21-node collocation.
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FIG. 7. Eigenvalues distribution of the preconditioned mawrix D} L
at £ =0.001 for a 21-node collocation.

cretization of the same terms leads to a nonpositive definite
preconditioned mairix. For these reasons we attempt to
couple the benefits of the two approaches, namely that
upwind finite differences ensure an easy inversion of the pre-
conditioning matrix itself, while central discretization is a
more effective preconditioner. This aim can be achieved
using a staggered grid preconditioner. The basic idea under-
lying the staggered grid preconditioning is that of restoring
the good behaviour of the central difference precondition-
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FIG. 8. Eigenvalues distribution of the preconditioned matrix D 'L
at ¢=0.0001 for a 21-node collocation.



ADVECTION-DIFFUSION EQUATIONS 5

ing, while using upwind finite differences. To clarify this last
point we focus upon the nonperiodic first-order problem

dut
E:ﬂxl (12}

with Dirichlet boundary condition at x = + 1. For this case,
Funaro and Rothman [4] proposed the preconditioned
system

(Z,D,)"'L,U=(Z,D,)"'F, (13)
where D, is the first-order upwind finite difference dis-
cretization of problem (10) at points {x;} (x,= cos(in/n),
¥i=0, ., n). L represents the Chebyshev pseudo-spectral
approximation to the derivative operator at the collocation
points {x;} and Z, is a mapping operator between the
points {x;} and {&,} (¢,=cos{(2i—1)n/2n), Vi=1, .., n).
The preconditioned eigenvalues of matrix (Z,D,) ' L have
been shown [4] to be real and lie between | and #/2. An
heuristic understanding of this good behaviour can be found
in the fact that the first-order upwind finite difference
approximation of the derivative discretized at points {x;}
can be regarded as a central one with respect to the set of
points {&;}. This way of thinking can be validated by
looking at the preconditioned eigenvalues of the Fourier
pseudo-spectral approximation to Eq. (12) with periodic
boundary conditions. In this case a finite difference central
discretization preconditioner, using the original Fourier
nodes would lead to the preconditioned eigenvalues

(p 4x)

~ sin(p Ax)’ (14)

(p)

while the preconditioned eigenvalues for a central dis-
cretization on a staggered grid (i.e, the combination of
first-order upwind on the original Fourier nodes with a
mapping procedure to restore central discretization on the
same nodes) are given by

_ (pAx/2)
") sin(p dx/2) (13)

Eigenvaiues (15) can be regarded to be the same as those of
a central difference preconditioned system (14), where the
Fourier pseudo-spectral approximation to the derivative is
collocated at points {¢,} (Y;=n(2i—1)/n, ¥Yi=1, ., n)
instead of {¢,} (¢,=2ni/n). This suggests that a possible
strategy for properly preconditioning the Chebyshev
pseudo-spectral approximation to Eq. (1) could be to shift
the grid over which the preconditioner is defined. Following
the previous discussion we expect an upwind finite dif-
ference approximation to the advective—diffusive operator

to collocate the solution in a “central fashion” on a
particular set of points, which are, a priori unknown.
Pursuing this idea we propose to rewrite the finite difference
preconditioner to Eq. (1), according to
(1= 0.+ Bé-w,—e(l —fB)d u,—efo_u,=f;, (16)
where & is the first-order upwind finite difference operator,
while
6;(ui:5(‘x(5('xuiﬁ5('xui—])' (17)
Both the advective and the diffusive finite difference
operators coliocate their approximations on the same set of
points {X,}, which are related to the corresponding
Chebyshev node as
%= x;— 5Bl —x,_ ). (18)
Using an optimal upwind method [5], where § is selected
as
Ax, 2
x,) £ (19)

[)'=C0th (E" _A__x'

with

Ax;=x,—x,_, (20)
on an uniform mesh, a second-order finite difference dis-
cretization is obtained for the whole advective-diffusive
operator. Formula (18) can also be considered as an exact
evaluation of the position, where the scheme is central, for
the case of constant advection with respect to x. To prove
this point it is sufficient to expand in Taylor's series
scheme (16) around a generic X;. Since the finite difference
approximation of the diffusive term collocates in the same
positions as the advective one, we consider only the Taylor’s
series expansion of

(1= B) 8+ o (21)

around X,. On a uniform mesh we have
_ du 1 d’u
(1= 9) et = () _+3 002 ()

1 d3u
+2 (h? + 3a® = 3afh) (;j?)_

(22)

where a=x;—x; and h=x,,,—x;=X,;,, —X;. The last
identity holds only if constant advection is considered.
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At the same time a central discretization of du/dx can be

written as
W, — U, cdu 1 du
_f‘rl_:_l_g(_ R __3) .
Xip1— X1 dxz 6 dx /<

By imposing the equivalence of (22) and {23) we obtain two
conditions: one on the coefficient of the second-order
derivative

(23)

(24)

a=%ﬁh:>’fi=xi+%ﬁ(xi+l_xi)

and one on the coefficient of the third-order derivative. For-
mula (24) validates assumption (18). The condition on the
third derivative can be used to find the value of §§ consistent
with a second-order discretization and leads to (19) [5,6].
In case of variable advection, formula (18) can be still con-
sidered as a good approximation as long as the advection is
represented by a smooth function of x. Summarizing, we
expect that a modified finite difference preconditioner,
based on discretization (16), coilocates in a “central
fashion™ the solution at the set of points {x,} (i=0,.., )
defined by the formula (18). Considering a step of a
preconditioned Richardson iteration,

Droa( V' = V") = w(F—L¥"), (25)

if the preconditioner D, 1s built according to the dis-
cretization (16), the left-hand side is collocated in a “cen-
tral” fashion at points {X;} (=0, .., n), while on the right-
hand side the residuals are taken at the usual Chebyshev
nodes. It becomes clear that some mapping operator has to
be introduced in Eq. (25). To simplify the notation we use
an overbar to indicate the values collocated at the set of
points {X,}. We look for mappings Z and W to be applied
respectively to the right- and to the left-hand sides of
Eq. {25) to make it consistent. Equation {25) can be rewritten
as

D, Z(V" 1 — ¥y = wRHS, (26)

where

RHS = W(F—LV"). (27)

System (26}-(27) can be solved by a two-step procedure,
meaning that, first we solve
Dmod( V" -

7"y = o W(F—LV™), (28)

AT ¥T_ 7 js collocated on

preT

where the correction &
the set of points {X,}, and then we shift the solution §
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FIG. 9. Eigenvalues distribution of the preconditioned wmatrix

(Zy— s Prica) ' WL at £ =0.1 for a 21-node collocation,

on the Chebyshev nodes by inverting the following sysiem
of equations;
Z(V"+lﬁV")=(V”+1—?ﬁ). (29)
While the operation involving the mapping W of the left-
hand side of Eq. (28} is just a matrix—vector multiplication,
the shift of matrix Z in Eq. (29) requires a matrix inversion.
In order to obtain a matrix similar to Z but easy to invert,
we substitute Z with some suitable matrix Z, which has to
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FIG. 10. Eigenvalues distribution of the preconditioned matrix
(Z.p— spDmoa) ~! WL at ¢ =0.0001 for a 21-node collocation.
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be regarded as an approximation to the operator related
to Z. Typically we build the approximate matrix Z,, by
means of polynomials and splines of different degrees which
interpolate the values of the corrections from points {X;} to
the nodes of the Chebyshev grid {x;}. In order to obtain a
matrix Z, that is cheap to invert we consider only inter-
polations that lead to tridiagonal matrices. Using cubic
splines the preconditioned matrix (Z,, ;,Dmoq) ™' WL is
found to be positive definite for any value of &. The positions
of the preconditioned eigenvalues at several values of ¢ for
a 21-node Chebyshev pseudo-spectral approximation are
shown in Figs. 9, 10, 11 and summarized in Table II.
Although positive defined, the eigenvalues are quite scat-
tered, complex, and, at low &, some of them have real parts
very close to zero. The location of the eigenvalues on the
complex plane explains the bad performance of the pre-
conditioned Richardson iterative procedure as shown in
Table II1. The situation does not improve in a significant
way when Lagrangian second-order polynomials are used
to build matrix Z,, {i.c, Z,,_,;). The eigenvalues of the
preconditioned matrix are still complex and some of them
have real parts that are very close to zero at low values of ¢,
Figures 12, 13, and 14 show the locus of the computed

TABLE 11
Testcase Max R(4) MinR(4) Max3() «
(ZupopDmoa)™ WLoe=10"5 13043 00971  0.6835 134325
(an_]gszod)_l WL, e=10"? 1.7615 04317 04389 4.0803
(Zap_mDmod)’l WL, e=10"* 1.5199 0.7538 0.3481 20163
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FIG. 12 Eigenvalues distribution of the preconditioned matrix
(Ziap — 12 Do}~ WL at e=0.1 for a 21-node collocation.

eigenvalues of (Z,, ;2D n0a) " WL for some meaningful
(corresponding to high Peclet numbers) values of . The
same results are summarized in Table IL

Neo dramatic increase of convergence rate is achieved as
shown in Table I11. Instead, impressive results are obtained
when the mapping is approximated with simple first-order
Lagrange polynomials. In this last case the preconditioned
eigenvalues are always very clustered and their imaginary
parts are quite small; this behavior is found to be independ-
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FIG. 13. Eigenvalues distribution of the preconditioned matrix
(Z;‘,p_,gszd)’l WL at £ =0.001 for a 21-node cellecation.
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ent from the number of used nodes. Figures 1 5-18, together
with Table 11 summarize the results.

As a benchmark of the effectiveness of the precondition-
ing the convergence rate of the already introduced pre-
conditioned Richardson (7) iterative scheme is measured.
The iterative process is always started from the finite
difference solution of the same differential problem
(Eq. (1)), and the optimal relaxation parameter e is chosen
for each computed case according to the relationship
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FIG. 15, Eigenvalues  distribution of the  preconditioned
matrix(Z,, ,, Dnea) ™' WL at £=0.01 for a 21-node collocation.
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FIG. 16. Eigenvalues distribution of the preconditioned matrix
(Zp 151 Do) ~' WL at &= 0.0001 for a 21-node collocation.

0 =2/{Ain + Amax ). The error between the exact solution
of Eq. (1),

u(x)=sin{ax), (30)
and the approximate solution, as determined by the
L2[ —1, 4+ 1] norm is in the order of 1 x 10~ '*, The results
of the proposed mapping strategies are compared in
Table IIL.
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FIG. 17. Eigenvalues distribution of the preconditioned matrix
(2,151 D g}~ WL at £ =0.00001 for a 21-node collocation.
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FIG. 18 Eigenvalues distribution of the preconditioned matrix
{ZLap-1g1 Drag) “1'WL at s = 0.00001 for a 41-node collocation.

3. ALGORITHM EXTENSION TO THE 2D CASE

For Eq.{2), in two-dimensions, the Chebyshev advec-
tion-diffusive operator
(x, ) d +qlx, ») O 4 (31)
X, y)— V)=
X,y ax Taxn S »
with homogeneous Dirichlet boundary conditions at
[—1}x[=-41], {1}x[—-1,1], [-1,1]x{—1}, and
[ —1, 1]x {1} can be represented by the n* x n? matrix L.
The Chebyshev pseudo-spectral approximation to Eq. {2)
becomes
L2(U)=F. (32)
A natural extension of the algorithm presented in the pre-

vious section implies the introduction of a finite difference
discretization to Eq.(2) equivalent to the one applied

TABLE 111
Testcase Initial L2 error Iterations
DL =107 42x107! 136
{(Zpip Do} ™' WL, e= 1072 61x1072 19
(Z,p—pDroa) ' WL, £=10"3 43 %1072 122
(Zop 12 Do} " WL s =107 41x107? 97
(Zop g1 Pasoa} I WL, e =107 54x 1077 24
(Zop—1g1 Do) ™ WL, £ = 10* 5.7x 1072 32

to Eq.(1). We propose the following finite difference
approximation, where the superscript F indicates the direc-
tion of upwinding, i.e., forward or backward differencing,

Pl =80ty +q (1= A ), u;+ 070
+ ﬁ‘éf EA— 8(1 - IBY) 5.vxu_£j— 8(1 - ﬁj‘) 51)»”—

I

- Sﬁréf\*u_y— Eﬁ)iu_u + ri.j”ij :.f’—;'jﬁ (33)
where
P =px, ) (34)
4., =q(x, ;) {35)
T =rx,¥) (36)
fo=fE. 7)) (37)

All the functions are evaluated at shifted points { (X, ¥;)},
to be defined later. Again, the finite difference discretization
can be regarded as an optimal upwind scheme when the two
parameters f§, and f8, are chosen as

_ plx, y)dx 2
po=coth (38)
B =com 1By 2 (39)

2 qlx. y) 4y

and we expect this discretization to collocate in a “central”
fashion the solution at the set of points {(X7, ¥;)} that,
following the same idea applied for the one-dimensional
case, can be assessed to be

Xy xj+%18,r(xi+l —Xx;) if P(x:‘aJ’j)<0

40
£j=xi_%ﬁx(xi—xi»!.) o)

kel

if plx;, »)>0

lf q(xr's J’J}<0
if g{x;,y,)>0.

¥i=y;+ %ﬁy(}’j+ 1= J’j)

i, (41)

Vy=J¥;— %ﬁy()’_;—yj_l)
The position of the shifted point for a generic Chebyshev
node is sketched in Fig. 19.

In the present case the finite difference operator D, 4,
based on discretization (33), collocates the “central”
solution on a cloud of scattered points {(x;, ¥;)}
determined by the local Peclet number according to
formulas (40)-(41). Again, we solve the linear system (32)
with a preconditioned Richardson scheme

H'?5V7+! = »RAS", (42)

where H? =D2) Z® and RHS" = WO(F—L?¥"). The
overbar still represents the collocation at points (X, ¥;,).
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FIG. 19. Sketch of the position of a shifted point for a generic
Chebyshev node.

We introduce, as for the one-dimensional case, the operator
Z.2) as an approximation to matrix Z'* which relates the
values computed in a “central fashion” on the staggered grid
{{(x;, ¥}, to the ones on the two-dimensional Chebyshev
grid {x;} and {y;} (x,=cos(in/n), y;=cos(jn/n), Vi, j:
i=0, .., nj=0,.., n). Several approximations to Z_) have
been tested and the best result found when using second-
order Lagrange polynomials. For this case we analyse the
eigenvalue distribution both for the constant advection and
variable advection problems (2). In the first case functions
p(x, yyand g(x, y) are sclected as constants equal to one; in
the second one p{x, y) and gq(x, y) are

(43)
(44)

plx, y)=3xx-—y—1
g(x, y)=1.

In the constant advection problem, the eigenvalues of the
preconditioned matrix Z'2'D2/,'W®L? are shown in
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"FIG. 20. Eigenvalues distribuiion ol the preconditioned matrix
(ZZDD )7 WILY in the constant advection case at ¢=0.001 for an
11 x t1-node collocaltion.
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FIG. 21. Eigenvalues distribution of the preconditioned matrix
(Z2DE)~ WL in the constant advection case at £=0.0001
(bottom) for an 11 x 1 1-node collocation.

Figs. 20 and 21 for a 11 x 11 Chebyshev pseudo-spectral
collocation at £ = 0.001 and at £=0.0001, respectively.
They are quite clustered and, apparently, safely larger
than zero. When a variable advection problem (2) is con-
sidered, (18) does not hold anymore. The set of points
{(x;, 75}, determined by formulas {40)-(41) can be con-
sidered only as an approximation to the real locations of the
shifted points. This consideration may be taken as an
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F1G. 22. Eigenvalues distribution of the preconditioned matrix
(ZE'D2) ) WL in the variable advection case at £=0.0001 for an
11 % 11-node collocation.
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TABLE IV

Tesicase {nitial L2 ervor  Tterations
(ZXD12) ) WIBL2, £ = 10 const adv. 68x10"" 37
(ZLf'Dﬁ},d)" WL, g < 10~ const adv, 33x107! 112
(Z‘,ﬂ[)ijj,d)" WL, ¢ = 1. nonconst adv. 47x10~* 26
(ZUDE )~ WL o= [0~ nonconst adyv. 33x107 28
(ZLDI2 ' WELR) ¢ = (072 nonconst ady. 25%10°" 19
(Zf’D‘;;d)" WL g = 10~ nonconst ady. 41x107" 176
H; 'L'® £=1. nonconst adv. 10x107? 14
H..'L®, &= 10"" nonconst adv. 50x107? 20
H,'L'*, £=10~2 nonconst adv. 70%1077 48
HZ'L' ¢ =107 noncenst. adv. Unastahle

explanation of the less satisfying (with respect to the pre-
vious case) behaviour of the preconditioned eigenvalues at
very low values of ¢ of which an example is given in Fig. 22,
for ¢=0.0001 and an 11 x 11 Chebyshev grid. However, as
shown below, full convergence is obtained for all &. As
shown for the one-dimensional case we use the precondi-
tioned Richardson iterative scheme (7) as a benchmark to
test the effectiveness of the preconditioner. Again the initial
guess for the iteration is the solution of problem (2)
obtained by the finite difference approximation (33) or by
finite elements (see below). The error between the exact
solution of Eq. (2) with variable advection,

u(x, y) = sin(nx) x sin{my), (45)

and the approximate solution, given by the L2[ —1,1]
norm is of the order of 1 x 10~!2 for a Chebyshev grid of a
21 % 21 nodes. Table IV summarizes the results for different
values of ¢ and introduces a comparison between the
proposed algorithm and the results obtained on the same
equation (31) by Deville and Mund [8] with a finite
elements preconditioner. It appears that, at relatively high ¢
values, i.e., ¢ = 0.01, the proposed finite difference precondi-
tioner, while retaining a quite simple and compact structure,
performs as well as the finite elements one. Moreover, it
still behaves satisfactorily for advection dominated
problems, ic., ¢ lower than 0.01, where the finite elements
preconditioner encounters severe problems.

4. CONCLUSIONS

It has been shown that neither central nor upwind finite
differencing are, in their standard form, well suited as pre-
conditioners for the spectral solution of advection—diffusion
equations at high Peclet numbers. Good results can nstead
be obtained generalizing the approach proposed in [4],
namely using a finite difference approximation which is
weli-conditioned on the spectral grid points {x;} and cen-
tered with respect to a shifted grid {&,}, which is a priori
unknown and discretization dependent. Numerical tests
have shown that mapping the solution {£;} on the grid {x,}
leads to a preconditioner which is stabie and efficient at all
Peclet numbers. The choice of the mapping operator is criti-
cal for the efficiency of the method and further analysis is
required to determine the optimal form for multidimen-
sional, variable advection problems.
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